Planar Laser-Induced Fluorescence in a Turbulent Premixed Flame to analyze Large Eddy Simulation Models
نویسندگان
چکیده
Large eddy simulations (LES), where the large-scale motions are explicitly computed, is a promising tool for numerical simulations of reactive flows which generally exhibit large coherent structures. Nevertheless, subgrid-scale models have to be developed to describe the effects of the smaller flow motions not resolved in the simulation. An experimental method is presented for validation and development of these models, based on OH-LIF imaging in a V-shaped turbulent premixed flame stabilized behind a triangular flame holder. Instantaneous flame fronts are obtained by separating fresh and hot gases (figure 1a). A subgrid-scale combustion model is investigated here using the filtered progress variable approach. The curvature of the resolved flame front (figure 1b) appears to provide a promising estimation of the unresolved flame surface density.
منابع مشابه
Resolution Requirements in Stochastic Field Simulation of Turbulent Premixed Flames
The spatial resolution requirements of the Stochastic Fields probability density function approach are investigated in the context of turbulent premixed combustion simulation. The Stochastic Fields approach is an attractive way to implement transported Probability Density Function modelling into Large Eddy Simulations of turbulent combustion. In premixed combustion LES, the numerical grid shoul...
متن کاملLarge-Eddy Simulation of Turbulent Combustion
In recent years, Large Eddy Simulation (LES) has been successfully applied to non-premixed and premixed turbulent combustion problems [1, 2, 3]. In most technical combustion applications, the pure non-premixed or premixed combustion models are no longer valid, since partially premixed combustion has to be taken into account. An example is the stabilization region of a lifted non-premixed flame....
متن کاملWrinkling Scales of Turbulent Premixed Propagating Flame Fronts Obtained From LIF-OH Imaging
A key outstanding issue with turbulent premixed flames lies in modeling the burning rate which may be related to the flame surface density if the laminar flamelet assumption applies. Although it is generally accepted that, in the flamelet regimes, higher turbulence levels increases flame wrinkling and hence its surface density, recent imaging experiments are not consistent making this a controv...
متن کاملLarge eddy simulation of propane combustion in a planar trapped vortex combustor
Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...
متن کاملMeasurements of Conditional Velocities in Turbulent Premixed Flames by Simultaneous OH PLIF and PIV
Joint velocity/scalar imaging measurements are performed in turbulent premixed natural-gas/air flames to better characterize the turbulent flux of mean reaction progress variable, ru0c0. Simultaneous two-dimensional measurements of the velocity field and the relative OH concentration are obtained by particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) of the OH radical,...
متن کامل